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DERIVED CONES

The concept of derived cone to an arbitrary

subset of a normed space has been introduced

by M.Hestenes (1966) and successfully used to

obtain necessary optimality conditions in Con-

trol Theory.

However in the last 25-30 years this concept

has been largely ignored in favor of other con-

cepts of tangents cones, that may intrinsically

be associated to a point of a given set: the

cone of interior directions, the contingent, the

quasitangent and, above all, Clarke’s tangent

cone.

Properties of derived cones may be used to

obtain controllability and other results in the

qualitative theory of control systems.

Let (X, ||.||) be a normed space.



Definition. A subset M ⊂ X is said to be a

derived set to E ⊂ X at x ∈ E if for any finite

subset {v1, ..., vk} ⊂ M , there exist s0 > 0 and

a continuous mapping a(.) : [0, s0]
k → E such

that a(0) = x and a(.) is (conically) differen-

tiable at s = 0 with the derivative col[v1, ..., vk]

in the sense that

lim
Rk

+3θ→0

||a(θ)− a(0)−∑k
i=1 θivi||

||θ|| = 0.

A subset C ⊂ X is said to be a derived cone of

E at x if it is a derived set and also a convex

cone.

If M is a derived set then M
⋃{0} as well as

the convex cone generated by M , defined by

cco(M) = {
k∑

i=1

λjvj;λj ≥ 0, k ∈ N, vj ∈ M, j = 1, k}

is also a derived set, hence a derived cone.



The fact that the derived cone is a proper gen-
eralization of the classical concepts in Differ-
ential Geometry and Convex Analysis is illus-
trated by the following results:

If E ⊂ Rn is a differentiable manifold and TxE

is the tangent space in the sense of Differential
Geometry to E at x

TxE = {v ∈ Rn; ∃ c(.) : (−s, s) → X, C1,
c(0) = x, c′(0) = v},

then TxE is a derived cone; also, if E ⊂ Rn is
a convex subset then the tangent cone in the
sense of Convex Analysis defined by

TCxE = cl{t(y − x); t ≥ 0, y ∈ E}
is also a derived cone.

Since any convex subcone of a derived cone is
also a derived cone, such an object may not
be uniquely associated to a point x ∈ E; more-
over, simple examples show that even a maxi-
mal with respect to set-inclusion derived cone



may not be uniquely defined: if the set E ⊂ R2

is defined by

E = C1
⋃

C2,
C1 = {(x, x);x ≥ 0}, C2 = {(x,−x), x ≤ 0},

then C1 and C2 are both maximal derived cones

of E at the point (0,0) ∈ E.

The contingent, the quasitangent (intermedi-

ate) and Clarke’s tangent cones, defined, re-

spectively, by

KxE = {v ∈ X; ∃ sm → 0+, ∃xm → x, xm ∈ E :
xm−x

sm
→ v},

QxE = {v ∈ X; ∀sm → 0+, ∃xm → x, xm ∈ E :
xm−x

sm
→ v},

CxE = {v ∈ X; ∀ (xm, sm) → (x,0+), xm ∈ E,

∃ ym ∈ E : ym−xm
sm

→ v}

The cone of interior directions defined by

IxE := {v ∈ X; ∃ s0, r > 0 : x + sB(v, r) ⊂ E
∀ s ∈ [0, s0)}.



If C ⊂ X is a derived cone to E at x then

C ⊂ QxE.

If C ⊂ IxE is a convex cone then C is a derived

cone.

If C is a derived cone with nonempty interior

then Int(C) ⊂ IxE.

Theorem 1. Let X = Rn. Then x ∈ int(E) if

and only if C = Rn is a derived cone at x ∈ E

to E.



A CLASS OF SECOND-ORDER SEMI-
LINEAR DIFFERENTIAL INCLUSIONS

I = [0, T ] and let X be a real separable Ba-
nach space with the norm ||.|| and with the
corresponding metric d(., .).

A family {C(t); t ∈ R} of bounded linear oper-
ators from X into X is a strongly continuous
cosine family if

(i) C(0) = Id,

(ii) C(t + s) + C(t− s) = 2C(t)C(s) ∀t, s ∈ R,

(iii) the map t → C(t)x is strongly continuous
∀x ∈ X.

The strongly continuous sine family {S(t); t ∈
R} associated to a strongly continuous cosine
family {C(t); t ∈ R} is defined by

S(t)y :=
∫ t

0
C(s)yds, y ∈ X, t ∈ R.



The infinitesimal generator A : X → X of a

cosine family {C(t); t ∈ R} is defined by

Ay = (
d2

dt2
)C(t)y|t=0.

F (., .) : I ×X → P(X) is a set-valued map

x′′ ∈ Ax + F (t, x), x(0) = x0, x′(0) = x1.

(1)

A continuous mapping x(.) ∈ C(I, X) is called

a mild solution of problem (1) if there exists a

(Bochner) integrable function f(.) ∈ L1(I, X)

such that:

f(t) ∈ F (t, x(t)) a.e. (I),

x(t) = C(t)x0+S(t)x1+
∫ t

0
S(t−u)f(u)du ∀t ∈ I,



i.e., f(.) is a (Bochner) integrable selection of
the set-valued map F (., x(.)) and x(.) is the
mild solution of the Cauchy problem

x′′ = Ax + f(t) x(0) = x0, x′(0) = x1.

We shall call (x(.), f(.)) a trajectory-selection
pair of (1).

Corresponding to each type of tangent cone,
say τxE one may introduce a set-valued di-
rectional derivative of a multifunction G(.) :
E ⊂ X → P(X) (in particular of a single-valued
mapping) at a point (x, y) ∈ Graph(G) in the
direction v ∈ τxE

τyG(x; v) = {w ∈ X; (v, w) ∈ τ(x,y)Graph(G)}.

A set-valued map, A(.) : X → P(X) is said
to be a convex (respectively, closed convex)
process if Graph(A(.)) ⊂ X × X is a convex
(respectively, closed convex) cone.



AN EXAMPLE

The Cauchy problem associated to a nonlinear

wave equation

∂2z
∂t2

(t, x)− ∂2z
∂x2(t, x) ∈ G(z(t, x)), (0, T )× (0, π),

z(t,0) = z(t, π) = 0, in (0, T ),

z(0, x) = z0(x),
∂z
∂t(0, x) = z1(x) a.e. (0, π),

where G(.) : R → P(R) is a set-valued map,

z0(.) ∈ H1
0(0, π), z1(.) ∈ L2(0, π).

This problem may be rewritten as (1) with

X = L2(0, π), A : D(A) ⊂ X → X, Az = d2

dt2
z,

D(A) = H1
0(0, π) ∩H2(0, π)

F (.) : X → P(X), F (z) := Sel G(z(.)).

Sel G(z(.)) is the set of all f ∈ L2(0, π) satis-

fying f(x) ∈ G(z(x)) a.e. for x ∈ (0, π).

Au =
∑∞

n=1 n2 < u, un > un, u ∈ D(A),



un(t) = (2
π)

1
2 sin(nt), n = 1,2, ...

A is the infinitesimal generator of the cosine

family {C(t); t ∈ R} defined by

C(t)u =
∑∞

n=1 cos nt < u, un > un, u ∈ X.

The sine family associated is given by

S(t)u =
∑∞

n=1
1
n sin nt < u, un > un, u ∈ X.



MAIN RESULTS

Hypothesis 1. i) F (., .) : I × X → P(X) has
nonempty closed values and is measurable.

ii) There exists L(.) ∈ L1(I,R+) such that, for
any t ∈ I, F (t, .) is L(t)-Lipschitz.

Hypothesis 2. S be a separable metric space,
X0, X1 ⊂ X are closed sets, a0(.) : S → X0,
a1(.) : S → X1 and c(.) : S → (0,∞) are given
continuous mappings.

The continuous mappings g(.) : S → L1(I, X),
y(.) : S → C(I, X) are given such that

(y(s))′′(t) = Ay(s)(t) + g(s)(t),

y(s)(0) ∈ X0, (y(s))′(0) ∈ X1.

There exists a continuous function p(.) : S →
L1(I,R+) such that

d(g(s)(t), F (t, y(s)(t))) ≤ p(s)(t) a.e. (I), ∀ s ∈ S.



Theorem 2. Assume Hypotheses 1 and 2.

Then there exist M > 0 and the continuous

functions x(.) : S → L1(I, X), h(.) : S → C(I, X)

such that for any s ∈ S (x(s)(.), h(s)(.)) is

a trajectory-selection of (1) satisfying for any

(t, s) ∈ I × S

x(s)(0) = a0(s), (x(s))′(0) = a1(s),

||x(s)(t)−y(s)(t)|| ≤ M [c(s)+ ||a0(s)−y(s)(0)||

+||a1(s)− (y(s))′(0)||+
∫ t

0
p(s)(u)du].



Our object of study is the reachable set of (1)

x′′ ∈ Ax + F (t, x), x(0) ∈ X0, x′(0) ∈ X1.

(1)

RF (T, X0, X1) := {x(T );x(.) mild sol. of (1)}.

Hypothesis 3. i) Hypothesis 2 is satisfied and

X0 ⊂ X is a closed set.

ii) (z(.), f(.)) ∈ C(I, X)×L1(I, X) is a trajectory-

selection pair of (1) and a family P (t, .) : X →
P(X), t ∈ I of convex processes satisfying for

almost all t ∈ I the condition

P (t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(P (t, .)),

is assumed to be given and defines the varia-

tional inclusion

v′′ ∈ Av + P (t, v). (2)



Remark. For any set-valued map F (., .), one

may find an infinite number of families of con-

vex process P (t, .), t ∈ I, satisfying this condi-

tion; in fact any family of closed convex sub-

cones of the quasitangent cones,

P (t) ⊂ Q(z(t),f(t))graph(F (t, .)),

defines the family of closed convex process

P (t, u) = {v ∈ X; (u, v) ∈ P (t)}, u, v ∈ X, t ∈ I

that satisfy this condition. One is tempted, of

course, to take as an ”intrinsic” family of such

closed convex process, for example Clarke’s

convex-valued directional derivatives

Cf(t)F (t, .)(z(t); .).

Theorem 3. Assume that Hypothesis 3 is sat-

isfied and let C0 ⊂ X be a derived cone to

X0 at z(0) and C1 ⊂ X be a derived cone to

X1 at z′(0). Then, the reachable set of (2),

RP (T, C0, C1) is a derived cone to RF (T, X0, X1)

at z(T ).



APPLICATION

An application of Theorem 3 concerns local

controllability of the semilinear differential in-

clusion in (1) along a reference trajectory, z(.)

at time T , in the sense that

z(T ) ∈ Int(RF (T, X0, X1)).

Theorem 4. Let X = Rn, z(.), F (., .) and

P (., .) satisfy Hypothesis 3 and let C0 ⊂ X be

a derived cone to X0 at z(0) and C1 ⊂ X be a

derived cone to X1 at z′(0). If, the variational

semilinear differential inclusion in (2) is con-

trollable at T in the sense that RP (T, C0, C1) =

Rn, then the differential inclusion (1) is locally

controllable along z(.) at time T .

Proof. Theorem 1 and Theorem 3.
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